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Inflammasomes are newly recognized, vital players in innate immunity. The best

characterized is the NLRP3 inflammasome, so-called because the NLRP3 protein in

the complex belongs to the family of nucleotide-binding and oligomerization domain-

like receptors (NLRs) and is also known as “pyrin domain-containing protein 3”.

The NLRP3 inflammasome is associated with onset and progression of various

diseases, including metabolic disorders, multiple sclerosis, inflammatory bowel disease,

cryopyrin-associated periodic fever syndrome, as well as other auto-immune and auto-

inflammatory diseases. Several NLRP3 inflammasome inhibitors have been described,

some of which show promise in the clinic. The present review will describe the structure

and mechanisms of activation of the NLRP3 inflammasome, its association with various

auto-immune and auto-inflammatory diseases, and the state of research into NLRP3

inflammasome inhibitors.
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INTRODUCTION

The mammalian immune system defends against internal and external threats using innate

immunity and adaptive immunity (Neill et al., 2010). The innate immune response relies on
pattern-recognition receptors (PRRs) to target pathogenic microbes and other endogenous or

exogenous pathogens. PRRs are expressed mainly in immune and inflammatory cells such as
monocytes, macrophages, neutrophils, and dendritic cells (DCs) (Schroder and Tschopp, 2010;

Fullard and O’Reilly, 2015). They present antigens to the adaptive immune system to generate
long-lasting protection (Alexandre et al., 2014). Pathogen-associated molecular patterns (PAMPs),

which are antigens common to a given group of pathogens (Medzhitov, 2009; Abderrazak et al.,
2015b), are normally recognized by at least three PRRs: Toll-like receptors (TLRs), C-type lectins

(CTLs), and Galectins (Bourgeois and Kuchler, 2012; Dzopalic et al., 2012). The innate immune
system is evolutionarily conserved across vertebrates and invertebrates, which means that both
human and animal studies can provide valuable insights into innate immunity (Dai et al., 2015).

A newly identified PRR, first described in detail in 2002, is the inflammasome (Martinon
et al., 2002; Gentile et al., 2015; Jorgensen and Miao, 2015; Sanders et al., 2015). Numerous

inflammasomes have been identified, including NLRP1, NLRP2, NLRP3, double-stranded DNA
(dsDNA) sensors absent in melanoma 2 (AIM2) and NLRC4 (Ozaki et al., 2015). The best

characterized is the NLRP3 inflammasome, so named because the NLRP3 protein in the complex
belongs to the family of nucleotide-binding and oligomerization domain-like receptors (NLRs)

and is also known as “pyrin domain-containing protein 3” (Inoue and Shinohara, 2013b;
Eigenbrod and Dalpke, 2015). In addition to the NLRP3 protein, the NLRP3 inflammasome

also contains adapter protein apoptosis-associated speck-like protein (ASC) and procaspase-1
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(Inoue and Shinohara, 2013a; Ito et al., 2015). Interactions among

these three proteins tightly regulate inflammasome function in
order to ensure immune activity only when appropriate.

In the absence of immune activators, an internal interaction
occurs between the NACHT domain and leucine-rich repeats

(LRRs), suppressing the interaction between NLRP3 and ASC,
thus preventing assembly of the inflammasome (Inoue and

Shinohara, 2013a). In the presence of immune activators such
as PAMPs, danger-associated molecular patterns (DAMPs), other

exogenous invaders or environmental stress, NLRP3 opens up
and allows interaction between the pyrin domains (PYDs) in

NLRP3 and ASC. Subsequently the caspase recruitment domain
(CARD) of ASC binds to the CARD domain on procaspase-

1, giving rise to the NLRP3 inflammasome. Formation of
this complex triggers procaspase-1 self-cleavage, generating

the active caspase-1 p10/p20 tetramer and inducing the
conversion of proinflammatory cytokines interleukin (IL)-
1β and IL-18 from their immature “pro” forms to active

forms that are secreted. Formation of the inflammasome
also triggers a process of inflammation-related cell death

termed pyroptosis (Willingham et al., 2009; Schroder and
Tschopp, 2010; Zhong et al., 2013a; Jorgensen and Miao,

2015).

ACTIVATION OF THE NLRP3
INFLAMMASOME

Models of NLRP3 Inflammasome
Activation
The NLRP3 inflammasome is present primarily in immune

and inflammatory cells following activation by inflammatory
stimuli; these cells include macrophages, monocytes, DCs,

and splenic neutrophils (Guarda et al., 2011b; Zhong et al.,
2013a). Activation of the NLRP3 inflammasome appears to
occur in two steps (Zhong et al., 2013a; Sutterwala et al.,

2014; Ozaki et al., 2015; Figure 1). The first step involves
a priming or initiating signal in which many PAMPs or

DAMPs are recognized by TLRs, leading to activation of
nuclear factor kappa B (NF-κB)-mediated signaling, which

in turn up-regulates transcription of inflammasome-related
components, including inactive NLRP3, proIL-1β, and proIL-

18 (Bauernfeind et al., 2009; Franchi et al., 2012, 2014). This
priming step is often studied in vitro using lipopolysaccharide

(LPS; Park et al., 2015). The second step of inflammasome
activation is the oligomerization of NLRP3 and subsequent

assembly of NLRP3, ASC, and procaspase-1 into a complex.
This triggers the transformation of procaspase-1 to caspase-1,

as well as the production and secretion of mature IL-1β and
IL-18 (Kim et al., 2015; Ozaki et al., 2015; Rabeony et al.,

2015).
Three models have been proposed to describe the second step

of inflammasome activation, as described in detail by Schroder
and Tschopp (2010) (shown in Figure 1). Briefly, all models

assume that NLRP3 does not directly interact with exogenous
activators, consistent with its ability to sense various pathogens.

In the first model, extracellular adenosine triphosphate (ATP),

which acts as an NLRP3 agonist, induces K+ efflux through
a purogenic P2X7-dependent pore consisting of a pannexin-

1 hemichannel. This process leads to NLRP3 inflammasome
activation and assembly. Consistent with this model, K+ efflux

is a major activator of the NLRP3 inflammasome, while
extracellular ATP and pore-forming toxins are the major triggers

of IL-1β secretion by the inflammasome (Hari et al., 2014;
Liu et al., 2014; Ketelut-Carneiro et al., 2015; Schmid-Burgk

et al., 2015). Fluxes of intracellular and endoplasmic reticulum
(ER)-related Ca2+ may also activate the NLRP3 inflammasome

(Hussen et al., 2012; Zhong et al., 2013b; Shenderov et al., 2014).
In the secondmodel, all known PAMPs andDAMPs, including

the activators mentioned above, trigger the generation of reactive
oxygen species (ROS), which in turn induce assembly of the

NLRP3 inflammasome. For example, damage to NADPH oxidase
and other oxidative systems by mitochondrial ROS can activate
the inflammasome (van Bruggen et al., 2010; Crane et al., 2014;

Lawlor and Vince, 2014; Rajanbabu et al., 2015).
In the third model, assembly and activation of the NLRP3

inflammasome is thought to be triggered by environmental
irritants (such as silica, asbestos, amyloid-β, and alum) which

form crystalline or particulate structures when engulfed by
phagocytes. These aggregates cause lysosomal rupture and release

of lysosomal contents via a mechanism mediated by cathepsin B.
Consistent with this model, crystalline stimuli such as silica are

major triggers of IL-1β secretion by the inflammasome.
Other factors can also activate the NLRP3 inflammasome.

These include mitochondrial damage or dysfunction caused by
mitochondrial Ca2+ overload (Iyer et al., 2013; Miao et al., 2014;

Zhuang et al., 2015), lysosomal disruption (Hornung et al., 2008;
Sheedy et al., 2013; Tseng et al., 2013), autophagic dysfunction

(Cho et al., 2014; Shao et al., 2014; Jabir et al., 2015) and the
activity of thioredoxin-interacting protein (TXNIP; Li et al., 2015;

Liu et al., 2015).

The NLRP3 Inflammasome in Disease
While the innate immune response to insults can efficiently
protect against disease and death, inappropriate activation

of the NLRP3 inflammasome can contribute to the onset
and progression of various diseases, particularly age-related

diseases such as metabolic disorders and metabolic syndrome
(Franceschi et al., 2000; Goldberg and Dixit, 2015). Increased

production of IL-1β and IL-18 by the NLRP3 inflammasome
contributes to atherosclerotic plaque progression and instability

in atherosclerotic patients and animal models (Altaf et al.,
2015; Patel et al., 2015; Peng et al., 2015). For example,
Patel et al. (2015) showed that genetic ablation of the NLRP3
inflammasome suppressor known as the inhibitor of κB kinase

epsilon (IKBKE) enhanced the acute phase response and
down-regulated cholesterol metabolism in cultured macrophages

and hypercholesterolemic mice. Atherosclerosis and other
inflammatory diseases were more severe in animals with the

ablation.
Studies in macrophages and animal models have shown that

oxidized low-density lipoprotein and cholesterol crystals trigger
NLRP3 inflammasome activation (Duewell et al., 2010; Liu et al.,
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FIGURE 1 | Schematic illustration of the NLRP3 inflammasome activation. Upon exposure to pathogen-associated molecular patterns (PAMPs) or

danger-associated molecular patterns (DAMPs), Toll-like receptors (TLRs) are phosphorylated and subsequently activate NF-κB. In the nucleus, NF-κB promotes the

transcription of NLRP3, proIL-1β, and proIL-18, which, after translation, remain in the cytoplasm in inactive forms. Thus, this signal (depicted in red as “Signal 1”) is a

priming event. A subsequent stimulus (shown as “Signal 2” in black) activates the NLRP3 inflammasome by facilitating the oligomerization of inactive NLRP3,

apoptosis-associated speck-like protein (ASC), and procaspase-1. This complex, in turn, catalyzes the conversion of procaspase-1 to caspase-1, which contributes

to the production and secretion of the mature IL-1β and IL-18. Three models have been proposed to describe the second step of inflammasome activation:

(1) Extracellular ATP can induce K+/potassium efflux through a purogenic P2X7-dependent pore, which, leads to the assembly and activation of the NLRP3

inflammasome. Calcium flux is also involved in this process. (2) PAMPs and DAMPs trigger the generation of ROS that promote the assembly and activation of the

NLRP3 inflammasome. (3) Phagocytosed environmental irritants form intracellular crystalline or particulate structures leading to lysosomal rupture (magenta box) and

release of lysosomal contents like cathepsin B. These induce NLRP3 inflammasome assembly and activation. In addition, other factors and mechanisms have been

implicated in the assembly and activation of the NLRP3 inflammasome, including mitochondrial damage, autophagic dysfunction, and thioredoxin-interacting protein

(TXNIP).

2014). In macrophage and animal models of type II diabetes,

hyperglycemia, and free fatty acids trigger inflammasome
activation, which harms glucose metabolism and strengthens

insulin resistance (Honda et al., 2014; Legrand-Poels et al., 2014;
Ruscitti et al., 2015). In macrophage and animal models of
uric acid accumulation, monosodium urate crystals activate the

NLRP3 inflammasome, causing gout (Hari et al., 2014; Wang
et al., 2014; Cleophas et al., 2015). Taken together, these findings

suggest that during the progression of many metabolic diseases,
the accumulation of abnormal metabolic products activates

the NLRP3 inflammasome. Studies in animal models suggest
a similar picture in Alzheimer’s disease (Vajjhala et al., 2012;
Schnaars et al., 2013; Cho et al., 2014) and obesity induced
by a high-fat diet (Haneklaus and O’Neill, 2015; Zhang et al.,

2015).
In macrophages and in animal models, studies have also

defined a role for the NLRP3 inflammasome in the initiation
and development of cerebral and myocardial ischemic diseases,

including cerebral ischemia/stroke and myocardial ischemia

(Sandanger et al., 2013; Marchetti et al., 2014; Hecker et al.,
2015; Ito et al., 2015). Inflammasome activation appears to

contribute to post-ischemic inflammation after stroke. For
example, Ito et al. (2015) showed that using ibrutinib to inhibit
Bruton’s tyrosine kinase (BTK), an essential component of the

NLRP3 inflammasome, reduced infarct volume, and neurological
damage in a mouse model of cerebral ischemia/reperfusion

injury. In addition, it is reported by Hecker et al. (2015)
that activation of nicotinic acetylcholine receptors containing

subunits α7, α9, and/or α10 inhibited ATP-mediated IL-1β
release by human and rat monocytes, helping protect them from

collateral damage. NLRP3 inflammasome-related proteins are
up-regulated in myocardial fibroblasts following infarction, and

this up-regulation may contribute to infarct size in ischemia-
reperfusion injury (Sandanger et al., 2013). Consistent with this

idea, inhibiting the NLRP3 inflammasome reduces myocardial
injury after ischemia-reperfusion in mice (Marchetti et al., 2014).
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NLRP3 inflammasome activation has also been linked

to various auto-immune and auto-inflammatory diseases.
Work from our laboratory and others has demonstrated that

NLRP3 inflammasome activation contributes to progression of
multiple sclerosis in humans and experimental autoimmune

encephalomyelitis (EAE) in animal models (Ming et al., 2002;
Jha et al., 2010; Lalor et al., 2011; Inoue et al., 2012a,b;

Shao et al., 2014). Severity of multiple sclerosis in patients
correlates closely with levels of IL-1β, IL-18, and caspase-1

(Ming et al., 2002; Jha et al., 2010; Lalor et al., 2011); the
serum levels of both ILs and of active caspase-1 (p20) are

elevated in mice with EAE (Inoue et al., 2012a,b). Studies
in macrophages and mouse models of colitis have linked

abnormal NLRP3 inflammasome activation with inflammatory
bowel disease, including ulcerative colitis and Crohn’s disease

(Cheng et al., 2015; Guo et al., 2015; Sun et al., 2015).
Polymorphism in the NLRP3 gene is linked to colitis severity
and progression in patients (Villani et al., 2009; Lewis et al.,

2011), and gain-of-function mutations in the NLRP3 gene
that increase production and secretion of IL-1β and IL-

18 are associated with cryopyrin-associated periodic fever
syndrome (CAPS; Bozkurt et al., 2015; Carta et al., 2015;

Zhou et al., 2015). This syndrome comprises several rare
hereditary auto-inflammatory diseases in humans and animal

models, including familial cold auto-inflammatory syndrome and
Muckle–Wells syndrome. Inhibiting IL-1 using specific blocking

agents effectively reduces systemic inflammation in CAPS
patients (Kuemmerle-Deschner, 2015; Yadlapati and Efthimiou,

2015).

PHARMACOLOGICAL USE OF NLRP3
INFLAMMASOME INHIBITORS

The extensive involvement of the NLRP3 inflammasome in
such a range of diseases makes it a highly desirable drug

target. Fortunately numerous promising inhibitors of NLRP3
inflammasome activation have been described, several of which

are briefly described below together with their pharmacological
mechanisms (shown in Table 1).

MCC950 and β-Hydroxybutyrate
Two small-molecule inhibitors of the NLRP3 inflammasome

were described in groundbreaking reports in Nature Medicine
this year (Coll et al., 2015; Youm et al., 2015). Coll et al.

(2015) discovered that MCC950, a diarylsulfonylurea-containing
compound known to inhibit caspase-1-dependent processing

of IL-1β (Perregaux et al., 2001), also inhibits both canonical
and non-canonical activation of the NLRP3 inflammasome.

MCC950 inhibits secretion of IL-1β and NLRP3-induced ASC
oligomerization in mouse and human macrophages. It reduces

secretion of IL-1β and IL-18, alleviating the severity of EAE
and CAPS in mouse models. Coll et al. (2015) further showed

that MCC950 acts specifically on the NLRP3 inflammasome:
it does not inhibit the activation of NLRP1, AIM2, or NLRC4

inflammasomes. Baker et al. (2015) have shown that MCC950
inhibits LPS-induced production of IL-1β via a mechanism

TABLE 1 | Potential mechanisms of several NLRP3 inflammasome

inhibitors.

NLRP3 inflammasome inhibitor Potential mechanisms involving NLRP3

inflammasome inhibition

Small-

molecule

inhibitor

MCC950 Blocking apoptosis-associated speck-like

protein (ASC) oligomerization,

Inhibiting of canonical and non-canonical

NLRP3 inflammasome;

BHB Blocking ASC oligomerization,

Inhibiting K+/potassium efflux;

Type I interferon (IFN) and IFN-β Inducting phosporylation of STAT1,

transcription factor,

Inducting IL-10 production;

Autophagy

inducer

Resveratrol Inducing autophagy process,

Suppressing mitochondrial damage;

Arglabin Inducing autophagy process,

Reducing cholesterol level;

CB2R agonist Inducing autophagy process,

Inhibiting priming step of NLRP3

inflammasome activation;

MicroRNA MicroRNA-223 Suppressing NLRP3 protein expression.

dependent on the cytoplasmic LPS sensors caspase-4 and caspase-

5. Krishnan et al. (2015) demonstrated that hypertension in mice
treated with salt and deoxycorticosterone acetate can be reversed

by treating them with MCC950, and this reversal depends on
the inhibition of inflammasome activation and inflammasome-

related IL-1β production.
Youm et al. (2015) discovered that the ketone metabolite

β-hydroxybutyrate (BHB), but not acetoacetate or the short-
chain fatty acids butyrate and acetate, reduced IL-1β, and IL-18
production by the NLRP3 inflammasome in human monocytes.

Like MCC950, BHB appears to block inflammasome activation
by inhibiting NLRP3-induced ASC oligomerization. Their in vivo

experiments showed that BHB or a ketogenic diet alleviate
caspase-1 activation and caspase-1-mediated IL-1β production

and secretion, without affecting the activation of NLRC4 or
AIM2 inflammasomes. BHB inhibits NLRP3 inflammasome

activation independently of AMP-activated protein kinase,
ROS, autophagy, or glycolytic inhibition. These studies raise

interesting questions about interactions among ketone bodies,
metabolic products, and innate immunity. BHB levels increase

in response to starvation, caloric restriction, high-intensity
exercise, or a low-carbohydrate ketogenic diet (Cotter et al.,

2013). Vital organs such as the heart and brain can exploit
BHB as an alternative energy source during exercise or caloric

deficiency. Future studies should examine how innate immunity,
particularly the inflammasome, is influenced by ketones and

other alternative metabolic fuels during periods of energy
deficiency (Shido et al., 1989; Johnson et al., 2007; McGettrick

and O’Neill, 2013; Mercken et al., 2013; Newman and Verdin,
2014).
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Although both MCC950 and BHB inhibit NLRP3

inflammasome activation, their mechanisms differ in key
respects. BHB inhibits K+ efflux from macrophages, while

MCC950 does not. MCC950 inhibits both canonical and non-
canonical inflammasome activation, while BHB affects only

canonical activation. Nevertheless both inhibitors represent a
significant advance toward developing therapies that target IL-1β

and IL-18 production by the NLRP3 inflammasome in various
diseases (Netea and Joosten, 2015).

Type I Interferon (IFN) and IFN-β
In contrast to these newly described, NLRP3-specific

inflammasome inhibitors, type I interferons (IFNs), including
IFN-α and IFN-β, have been used for some time to inhibit the

NLRP3 and other inflammasomes in various auto-immune and
auto-inflammatory diseases. These diseases include multiple

sclerosis, systemic-onset juvenile idiopathic arthritis caused
by gain-of-function NLRP3 mutations, rheumatic diseases and

familial-type Mediterranean fever (Guarda et al., 2011a; Inoue
et al., 2012b; Inoue and Shinohara, 2013b; Malhotra et al.,
2015; van Kempen et al., 2015). Type I IFNs are produced by

specialized immune cells such as macrophages and DCs in
response to extracellular stimuli such as bacteria and virus as well

as various environmental irritants (Meylan et al., 2006). These
IFNs are recognized by the type I IFN receptor (IFNAR), which

is a member of the TLR family and is composed of the subunits
IFNAR1 and IFNAR2. IFNAR activation involves several

proteins, including Janus kinases, tyrosine kinase 2, and several
kinds of signal transducers and activators of transcriptions

(STATs). However, how type I IFNs affect NLRP3 inflammasome
and its production of IL-1β and IL-18 remains unclear (Guarda

et al., 2011a), despite numerous studies aimed to improve
IFN-based treatments of NLRP3 inflammasome-related diseases.

To provide an example of progress in this area, we focus below
on studies of IFN therapy against multiple sclerosis in patients

and EAE in mice, since type I IFN therapy has been used as a
first-line or standard treatment of multiple sclerosis for 15 years

(Inoue et al., 2012b).
Malhotra et al. (2015) classified 97 patients with multiple

sclerosis into those who responded to IFN-β therapy and
those who did not, based on clinico-radiological criteria at 12
and 24 months of treatment. They found that expression of

NLRP3 protein and levels of IL-1β were significantly lower
among responsive patients who had relapsing-remitting multiple

sclerosis than among other patients. Guarda et al. (2011a) found
that IL-1β production by primary monocytes was lower in

multiple sclerosis patients on IFN-β treatment than in healthy
subjects, supporting the value of IFN-β therapy. Studies in mouse

bone marrow-derived macrophages by Guarda et al. (2011a)
suggest that IFN-β may inhibit IL-1β production through at least

two mechanisms. In one pathway, phosphorylation of STAT1
transcription factor leads to repression of NLRP1 and NLRP3

inflammasomes, which in turn inhibits caspase-1-dependent IL-
1β maturation. In the second pathway, type I IFNs induce IL-10

production via a STAT-dependent mechanism, and the IL-10
works in an autocrine fashion to reduce levels of pro-IL-1α and

pro-IL-1β via a mechanism dependent on STAT3 signaling.

Type I IFN treatment is not effective for all types of

multiple sclerosis, and the NLRP3 inflammasome may be a
key determinant. Inoue et al. (2012b) conducted studies on

mouse primary macrophage cultures as well as EAE mice and
concluded that IFN-β therapy is effective only when the NLRP3

inflammasome contributes directly to the disease process. Their
studies further showed that IFNAR activation could be inhibited

using the suppressor of cytokine signal 1 (SOCS1), which
inhibited Rac1 activation and ROS generation, leading in turn to

inhibition of NLRP3 inflammasome activity and less severe EAE.
These studies highlight the efficacy of type I IFN therapy

and the need for future studies to elucidate the mechanisms
of NLRP3 inflammasome inhibition. This work may improve

clinical approaches to treating multiple sclerosis and other auto-
immune and auto-inflammatory diseases.

Other Kinds of NLRP3 Inflammasome
Inhibitors
Several additional ways for inhibiting the NLRP3 inflammasome
have opened up in recent years. Autophagy, a self-protective

catabolic pathway involving lysosomes, has been shown to
inhibit the NLRP3 inflammasome, leading researchers to explore

the usefulness of autophagy-inducing treatments (Shao et al.,
2014). Chang et al. (2015) showed that the plant polyphenolic

compound resveratrol, known to induce autophagy, suppresses
mitochondrial damage in macrophages and thereby inhibits

NLRP3 inflammasome activation and NLRP3 inflammasome-
mediated IL-1β secretion and pyroptosis. Abderrazak et al.

(2015a) showed that arglabin inhibits the production and
secretion of IL-1β and IL-18 by the NLRP3 inflammasome in a

concentration-dependent manner in ApoE−/− mice on a high-
fat diet. The reduced IL production translates to less severe
atherosclerosis. Those authors reported that arglabin exerts its

effects in macrophages by inducing autophagy as well as by
reducing inflammation and cholesterol levels.

Cannabinoid receptor 2 (CB2R) is an already demonstrated
therapeutic target in inflammation-related diseases (Smoum

et al., 2015).Work from our own laboratory (Shao et al., 2014) has
shown that autophagy induction may help explain why activation

of the anti-inflammatory CB2R leads to inhibition of NLRP3
inflammasome priming and activation in mouse BV2 microglia

stimulated with LPS and ATP as well as in a mouse model of
EAE. Such CB2R activation reduces the severity of EAE in mice.

Thus CB2R agonists similar to the HU-308 used in our work may
become an effective therapy for treating NLRP3 inflammasome-

related diseases by inducing autophagy.
MicroRNAs may provide another route for inhibiting

inflammasomes. These endogenous non-coding RNAs are 20–
23 nt long and bind to the 3′ untranslated region (3′

UTR) of protein-coding mRNAs to regulate their translation
(Bartel, 2009; Chen and Sun, 2013). MicroRNA-223 binds to

a conserved site in the 3′ UTR of the NLRP3 transcript,
suppressing protein expression and thereby inhibiting NLRP3
inflammasome priming and IL-1β production (Bauernfeind

et al., 2012; Haneklaus et al., 2012; Chen and Sun, 2013).
Deficiency in microRNA-223 leads to neutrophilia, spontaneous

lung inflammation, and increased susceptibility to endotoxin
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challenge in mice (Johnnidis et al., 2008; Haneklaus et al.,

2013). Several other microRNAs have been reported to be
involved in the activation of the NLRP3 inflammasome,

including microRNA-155, microRNA-377, and microRNA-133a-
1. Reducing the levels of these factors may be useful for treating

inflammasome-related disease (Bandyopadhyay et al., 2013; Chen
et al., 2015; Wang et al., 2015).

CONCLUSION

The past decade has witnessed tremendous progress in

understanding the structure and activation of the NLRP3
inflammasome, as well as its roles in the initiation and
progression of various auto-immune and auto-inflammatory

diseases, including metabolic disorders, multiple sclerosis,
inflammatory bowel syndrome, and CAPS. Several types of

NLRP3 inflammasome inhibitors have been developed and
validated in cell culture studies and animal models of NLRP3

inflammasome-related diseases, and type I IFNs have become
well established in the clinic. On the other hand, several

agents have proven ineffective in clinical settings, and several

potential inhibitors require further development, such as

autophagy-inducing and microRNA agents. This highlights
the need for further research into what pathways activate

the NLRP3 inflammasome and can therefore be targeted by
appropriate inhibitors. There is still a long way to go toward

exploiting NLRP3 inflammasome inhibitors in our fight against
diseases.
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